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I
n recent years there has been an increas-
ing interest in using molecular films
for the production of organic electronic

devices. Thin films made of small molecules
or organic polymers can have very interest-
ing semiconducting properties, which can
be exploited for the production of OLEDs,
OFETs and solar cells.
While these technologies are still the

object of very intensive research, many
products are now commercially available
and fairly widespread. Typically, the elec-
tronic properties of the interface between
the metal electrodes and the organic semi-
conductor strongly affect the efficiency of
these devices. In particular, there is interest
in improving the level alignment across the
metal�organic (MO) interface, which is cru-
cial to reduce the carrier injection barriers,
in turn strongly affected by the presence
of interfacial dipoles. Much effort1 has thus
been put toward the theoretical under-
standing of the key processes and features
that contribute to the buildup of these
dipoles, such as charge transfers, chemical
bonding, pillow effect, intrinsic dipoles and
metal-induced gap states in the organic
semiconductor.2,3

Despite this progress, our prediction cap-
abilities are still limited,4 and the device
design is often a trial and error process.
Several attempts have been made to im-
prove the level alignment across MO inter-
faces. A common approach is to dope the
organic semiconductor in order to shift
its HOMO/LUMO levels, for example, using
molecular electron acceptors as dopants to
create charge transfer complexes.5,6 Alkali
metals are also exploited as dopants, thanks
to their low ionization potential and their
strong donor properties.7 Alternative pro-
cedures are based on the insertion of
additional layers (interlayers) between the
metallic electrode and the organic semicon-
ductor, whichmodify the interface dipole.8�11

For example, thin interlayers of organic mole-
cules12 andmolecular acceptors canpositively
modify the work-function and the injection
barriers of noble metal substrates.
The various methods used for tuning the

work function, and in particular the inser-
tion of interlayers, have recently resulted
in the successful production of prototype
deviceswith improvedefficiency,13�16which
is promising from a manufacturing point
of view.
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ABSTRACT

The performance of modern organic electronic devices is often determined by the electronic level alignment at a metal�organic interface. This property

can be controlled by introducing an interfacial electrostatic dipole via the insertion of a stable interlayer between the metallic and the organic phases.

Here, we use density functional theory to investigate the electrostatic properties of an assembled structure formed by alkali metals coadsorbed with

7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on a Ag(100) substrate. We find that the interfacial dipole buildup is regulated by the interplay of

adsorption energetics, steric constraints and charge transfer effects, so that choosing chemical substitutions within TCNQ and different alkali metals

provides a rich playground to control the systems' electrostatics and in particular fine-tune its work-function shift.
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This work is based on the idea that this could
eventually be achieved by inserting a self-assembled

monolayer, i.e, a structure that is self-fabricated upon
deposition, and could also modify the metal electro-
de's work-function and the charge carrier injection
barrier, e.g., in an organic field effect transistor.17

Recently, charge transfer complexes have been used
in this context,18,19 showing interesting effects on
hole- injection barriers. More generally, self-assembly
can lead to the formation of a wide range of two-
dimensional structures with different mechanical and
electrostatic properties20�22 and appears to be a very
promising route for the nanofabrication of interlayers.
Our starting point is the recently observed self-
assembled monolayer containing Cs alkali metals and
electronegativeorganic7,7,8,8-tetracyanoquinodimethane
(TCNQ) molecules,23 which has been shown to assem-
ble in large, compact, and stable chiral domains on
Ag(100) substrates.
In this work we investigate the possibility of extend-

ing the use of Cs to other alkali metals (Li, Na, K) to
tune the electrostatic properties of MO interfaces
incorporating thesemonolayers, with the ultimate goal
of extending both the range and the tunability of the
interfacial dipoles and electrode work-function. We
also suggest the possibility to achieve further control
of these properties by evaporating on the substrate
mixtures of alkali metals and molecular derivatives
with increased electronic affinities. In this respect, we
analyze the effects of replacing some TCNQ hydrogen
atoms with fluorine atoms and find that this simple
substitution produces sizable effects on the electrostatic
properties, without affecting the assembly stability.

RESULTS AND DISCUSSION

Observed Chiral Superstructure: The Cs-TCNQ4 Network. A
self-assembled organic salt formed by Cs alkali atoms
coadsorbed with TCNQ molecules has been recently
observed to form very stable and extended domains
on the Ag(100) substrate, even at room temperature.
Cs and TCNQ form intermediate windmill Cs-TCNQ4

complexes (Figure 1a), which aggregate in strictly chiral
domains, forming a commensurate (6,3,�3,6) square
superstructure (Figure 1b,c). The domain size can be
very large;typically more than 300 � 300 nm2

;and
much larger than the one obtained by a similar network
realizedwithMn transitionmetal. This is the result of an
assembly where the adlayer/substrate and the inter-
complex interactions in combinationwith local features
of the Cs�TCNQ bond are suitable to make the adlayer
particularly stable.

Specific properties influence the physics and the
stability of the system: the large electron affinity of
TCNQ (A= 4.23 eV)24makes it acquire charge both from
the surface and fromCs, which fully donates its valence
electron and establishes ionic, nondirectional Cs�N
bonds, with an associated high rotational freedom of
the molecules around the metal. This large flexibility
makes the complexes particularly adaptable to differ-
ent steric constraints and allows maximizing the num-
ber of N�Ag bonds (three permolecule, Figure 1c) that
drive the surface�adlayer interaction energetics, while
preserving the hydrogen bonds mediating the inter-
complex attractive interaction. The charge acquired by
TCNQ makes its central ring aromatic, further enhan-
cing the molecular flexibility25 and the ability of the
complexes to adapt within the network. Importantly,
the nitrogen atoms move toward the substrate upon
adsorption/assembly, while the Csþ cations are lifted-
up with respect to the four N ligand plane, resulting
in a highly nonplanar umbrella structure (Figure 2).
The Csþ-topped structure is associated with a positive
local electric dipole, which screens the surrounding
negative dipoles associated with the molecules and
achieves further structural stability through electro-
static screening. Clearly, varying the alkali ion height
changes the interfacial dipole. We thus propose that
this mechanism could be exploited to tune the elec-
trostatic properties of the interface, based on the
hypothesis that different alkali ions will relax at differ-
ent heights, while preserving the stability of the super-
structure described above.

Figure 1. (a) Cs-TCNQ4 windmill complex structure; (b) STM image showing the chiral self-assembly observed on the Ag(100)
substrate (courtesy of N. Abdurakhmanova); (c) DFT relaxed (6,3,�3,6) square network, with one complex per unit cell. Cs
atoms are in light blue (Cs�Cs distance is 19.4 Å). In (c), the black circles highlight the three N�Ag bonds/TCNQ, while the red
circle highlights the two hydrogen-bonds/TCNQ. N�Ag and the hydrogen bonds are the key features driving the monolayer
self-assembly.
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TCNQ Coadsorbed with Lighter Alkali: Li, Na, and K. All
these alkali atoms have a low ionization potential and
are expected to form TCNQ windmill complexes stabi-
lized by ionic bonds upon adsorption on Ag(100),
exactly as observed in the Cs case, and on Au(111)
for Li andNa.26 However, they have different ionic radii,
which increase going from Li to Cs (see Figure 4c).27

For each alkali metal M, we relax the periodically
repeated gas phase M�TCNQ4 complex network for
several intercomplex distances using periodic bound-
ary conditions [see also Supporting Information (SI).
Similar calculations of Mn- and Cs-TCNQ4 networks
were able to recognize the experimental configuration
as the energy minimum]. Through this analysis
we clearly identify two superstructures, (6,2,�2,6) and
(6,3,�3,6), as the most probable for all the alkali metals
(Figure 3). While the lighter Li and Na might prefer the
more compact assembly (6,2,�2,6), K prefers (6,3,�3,6),
like the experimentally observed Cs. We then relax
these two superstructures on a Ag(100) substrate,
focusing on the lighter Li and Na. Interestingly, in the
more compact superstructure, we find that the wind-
mill complexes become unstable (see the SI). While
a full phase space exploration is not viable and we
cannot thus rule out the possibility that much more
complicated arrangements may form, we interpret

the (6,2,�2,6) instability as a preference for the (6,3,�3,6)
superstructure even for the lighter alkali.

All systems studied in the (6,3,�3,6) superstructure
exhibit a highly nonplanar “umbrella-like” structure
(Figure 2). Even lithium, small enough to sit in the
plane formed by the N ligands, relaxes by raising its
z-coordinate, indicating a residual tendency to move
further away from the substrate to increase the positive
local dipole. Crucially, the different final height of the
alkali ions strongly influences the dipoles and work-
function shifts, as reported in Figure 4. As we move
from Cs to Li, we observe a decrease of the umbrella
effect and the related intrinsic positive dipole (Dadl)
associated with the M-linked (overall neutral) organic
layer.

The moderate increase of the induced dipole Dind

can be attributed only to differences in the adlayer
geometries, as further calculations including the metal
substrate indicate that the substrate-to-adlayer charge
transfer (CT) is the same for all systems (∼0.37e/TCNQ)
(see the SI). Importantly, while theDadl andDind dipoles
partially compensate each other, they do this to a
different degree depending on the alkali. This results
in an increase of the predicted work-function shift
going from Cs to Li. The predicted shifts are within a
0.46�0.67 eV range. These results clearly lead to the
conclusion that a more continuous tuning within
this range could be easily achieved by evaporating
alkali mixtures, so that the self-assembled monolayer
contains complexes with different metal centers.

TCNQ Fluorinated Derivatives. Another promising route
for fine-tuning the electrostatic properties of the struc-
tures is provided by introducing chemical substitutions
within the TCNQ unit molecules forming our assembly
complexes. Here we consider fluorinated derivatives
(FD-TCNQ), where some or all the hydrogen atoms are
substituted with fluorine atoms. This further increases
the molecular electronic affinity and can be used to
shift the interface dipole toward more negative values,
increasing the work-function positive shift. These sub-
stitutions also allow us to further explore the relation
between charge transfer processes and screening
effects achieved by the metal ion position.

Several FD-TCNQ are commercially available, the
affinity increasing with the level of fluorination.24

First we consider 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-
quinodimethane (F4-TCNQ), where all H atoms are sub-
stituted with F atoms. This molecule has A = 5.08 eV24

(0.85 eV higher than TCNQ), and its ability to increase
the work-function of several substrates has been

Figure 2. Highly nonplanar umbrella structure achieved by the windmill complexes as a function of the alkali metal center.

Figure 3. Total energy of periodically repeated networks
in the gas phase at different intercomplex distances. The
energy zero is set at the (6,3,�3,6) configuration (denoted
here 633) for all alkali�TCNQ4. We predict that the heavier
alkali (K, Cs) are stable in 633, while light alkali (Li, Na)
slightly prefer 622. The latter configuration, however, is
unstable on Ag(100) (see the SI). At lower intercomplex
distances the energy increase is due to steric effects, while
at larger distances, to the hydrogen bonds breaking. To
model the substrate effects, during the relaxation we con-
strained the nitrogens not bonded with the metal to a
specific z-coordinate, while the complexes were free to
relax in a nonplanar configuration.
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already reported.28,29When coadsorbedwithmolecular
donors, it reduces the hole-injection barrier between
Au electrodes and several organic semiconductors.30,31

We then consider the doubly substituted 2,5-difluoro-
7,7,8,8-tetracyanoquinodimethane (F2-TCNQ, A = 4.59 eV)
and fluoro-7,7,8,8-tetracyanoquinodimethane (F-TCNQ,
A = 4.55 eV), where only one H is replaced (see the SI for
the molecular structures on the substrate).

As in the case of non-F-substituted molecules, we
first analyze the stability of FD-TCNQ4 complexes in gas
phase, adsorbedwith one of the alkali metals, Cs. In this
case we find that the Cs-(F4-TCNQ)4 complexes do not
show any appreciable level of binding (see Figure SI-3),
since the intercomplex hydrogen bonds are comple-
tely absent. This indicates that a complete substitu-
tion of H with F would probably lead to an assembly
completely different from the chiral superstructure
investigated here (while small quantities of F4-TCNQ
as substitutional dopant might still presumably not
alter this superstructure and still influence its electro-
static properties). Our calculations indicate that the
F-TCNQ and F2-TCNQ derivatives, on the other hand,
form the same number of hydrogen bonds as TCNQ in
the self-assembled network. We considered two alter-
native configurations for the Cs-(F-TCNQ)4 complexes,
which can both recreate the same H-bonding pattern.
In one case the fluorine atom is on the side of the
molecule where one N is involved in the ionic bond
(F1s in Figure 5). In the second case the fluorine is on
the opposite side (F1o). For both these structures our
calculations once more predict a stable (6,3,�3,6)
superstructure, which we relax on the substrate (see
Figure SI-2). A Cs-(F4-TCNQ)4model systemwas, finally,
also relaxed on a Ag(100) substrate, to establish lower
and upper limits for the induced dipole and the Cs

screening dipole, respectively, when F4-TCNQ is used
as a dopant.

The electrostatic properties at the interface contain-
ing FD-TCNQ are presented in Figure 5. As a general
consideration, the presence of fluorine produces a
clear Dind decrease, due to the higher electron affinity
A and the correspondingly larger charge transfer. The
most spectacular dipole decrease (as much as ∼9 D)
is associated with the fully substituted derivative F4,
with an almost doubled work-function shift as com-
pared with nonsubstituted Cs-linked TCNQ complexes,
labeled T in Figure 5. These values provide an estimate
for the energy range where the electrostatic tuning is
possible using these dopants. The Dind decrease is
clearly less pronounced when the level of fluorination
decreases. In all these structures the Cs atom is pushed
up considerably (if compared to the nonfluorinated
complexes) and its height once more clearly correlates
with the degree of fluorination (cf. Figure 5b). We find
that this effect is partially due to the repulsion between
F and N ligands, which locally push the alkali up via the
local ionic bond, but also to the more subtle, already
mentioned long-range effect whereby the increased
dipole associated with the positive alkali atom screens
the stronger molecular negative dipole. Both effects
bring electrostatic stabilization, as confirmed by the
Dadl values, in all cases higher than in the reference
T system. (See also the SI. Notably, Dadl for F1s is lower
than F1o even if the Cs occupies a higher position. This
is due to the negative contribution to the dipole of the
fluorine, which also stands higher.)

In summary, our calculations predict that introdu-
cing TCNQ fluorinated derivatives does not destabilize
the adlayer since the flexibility of the complexes can
compensate for the additional charge transfer by

Figure 4. Alkali-dependent properties for alkali�TCNQ4 complexes on Ag(100). (a) Induced dipoleDind, due to the substrate/
adlayer charge transfer. TheDind increase is realizedbecause the same transferred charge is distributed at a lower quota (from
Cs to Li). (b) Intrinsic dipole Dadl, defined as the dipole of the electrically neutral adlayer in its adsorbed geometry. Its value
correlateswith the decreasing alkali quota. (c) Alkali ionic radii27 (red) andquota (black) in its adsorbed geometrywith respect
to the substrate. (d) Plot of the work-function shift, showing a clear trend of increase as we move toward lighter alkali. The
shift is proportional to the total dipole Dind þ Dadl and is calculated as in ref 37.
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raising the alkali cation position, thus screening the
electrostatic repulsion between negatively charged
complexes. Nonetheless their usage will increase the
work-function shift, as the total interfacial dipole
Dind þ Dadl becomes systematically more negative as
the adlayer's molecular affinity increases. For the case
of a Cs link atom, we predict a 0.87 eV upper limit for
the work-function shift, but we emphasize that for
lighter alkali metals this limit could further increase
(consistent with a lower Dadl). This significantly en-
larges the energy range within which electrostatic
tunability could be achieved. Also, we envisage that
various levels of molecular fluorination, as well as of
different alkali atom mixtures, could be realized within
any individual experiment and that further combining
these techniques could provide an unusually “robust”
parameter domain for experimental work aimed at
precise work-function tuning.

CONCLUSIONS

Alkali metals and TCNQ molecules coadsorbed on a
Ag(100) surface can form extended chiral assemblies of
windmill metal�organic complexes, experimentally
observed in the case of Cs.
In this work we have investigated via density func-

tional theory the properties of structures containing
other alkali atoms (Li, Na, K) for which experiments are
not yet available. This led us to identify the specific
superstructure observed in Cs as the most probable
arrangement even for lighter alkali metals. We find that
adsorbing different alkali metals has sizable effects
on the adlayer's highly nonplanar structure, while in
all cases the TCNQ molecules acquire charge from the
Ag(100) substrate. This affects the interfacial dipoles,

ultimately shifting the work-function in a predictable,
alkali-dependent fashion, in turn suggesting that mix-
tures of alkali asmetal centers could allow a continuous
tuning of the work-function within a fairly large energy
interval. The interval could be significantly further
increased by considering partially fluorinated TCNQ
derivatives, bringing it to an upper limit, which we
estimated as ∼1 eV.
Importantly, such a precise level alignment control

would be achievedwithin a single, self-assembledmono-
layermade of regular structures, which assemble in large
domains and are stable even at room temperature. This
route to work-function tuning differs from previous
approachesbased, for example, onvarying theadsorbate
coverage or using thick insulating layers (often with a
disordered structure) at the MO interface. This layer,
composed of oppositely charged donors and acceptors,
is structurally more stable against disruptive electrostatic
repulsion effects than adlayers of molecules having all
the same electronic character. Furthermore, the mono-
layer is not affectedby thedepolarization effects, yielding
work function saturation once the repelling dipoles
become unstable above a certain coverage, as is typical
of approaches where the deposition time is used to
control the work function at submonolayer coverage.
Thanks to its large size, regularity, and extremely reduced
thickness, the layer would provide a uniform contact
and facilitate transport processes of electrons across the
interface. The flexible nature of its bonding structure
determines an improved steric performance, as observed
for Cs-TCNQ4 onAg(100), possibly leading to large supra-
molecular assembly domains also on different substrates
of choice in specific applications. We speculate that
the large work-function energy range and continuous

Figure 5. Properties of the Cs-(FD-TCNQ)4 complexes on Ag(100) as a function of the level of fluorination. FD = F4, F2, and F1
report the number of fluorines permolecule. T stands for unsubstituted TCNQ. F1o and F1s are two alternative Cs-(F1-TCNQ)4
configurations; in one case F is substituted on the same side where the Cs�N bond is (F1s) and in the other on the opposite
side (F1o) (see also the SI). (a) Induced dipole Dind. (b) Intrinsic dipole Dadl (blue) and Cs height on the substrate (black). The
fluorines in F1o and F1s have a different z-coordinate, and this affects both the Cs height and the Dadl, see main text. (c)
Substrate�adlayer charge transfer per FD-TCNQmolecule. (d)Work-function shift, proportional to the total dipoleDindþDadl,
clearly correlated to the level of fluorination.
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tunability pointed out in this work could be appealing
also from a manufacturing point of view, where MO
interfaces incorporating alkali-linked organicmonolayers
could be fabricated by direct evaporation through
the self-assembly route. The electrostatic stability at
room temperature of such partially charged, organic salt

monolayers and their combinatorial variety in terms of
metal centers and molecular substituents, with the full
freedom of using more than one alkali and fluorinated
species concurrently, would seem tomake this approach
particularly promising for foreseeable experimental work
aimed at precise work-function control.

METHODS
Calculations were performed with the planewave-pseudopotential

packageQuantum-ESPRESSO,32 using Ultrasoft pseudopotentials33

with a wave function (charge) energy cutoff of 408 eV (4080 eV)
and a GGA-PBE34 exchange�correlation functional. Brillouin-zone
sampling included the k=Γpoint only. The adsorptionwas carried
out only on one side of the slab, avoiding spurious dipole effects by
means of the technique described in ref 35. Ag(100) surfaces were
modeled with three layers, allowing a vacuum (adlayer�surface
distance) of ∼10 Å. Forces were relaxed up to 0.26 eV/Å. In the
presence of the surface, only forces acting on the top layer and
the adlayer atoms were relaxed. Charge transfers are calculated
with a variation of the method described in ref 36; see also the SI.
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